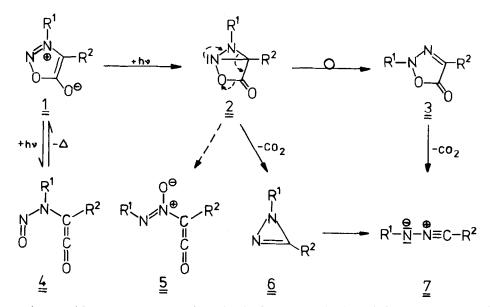
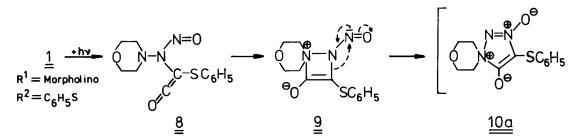
Tetrahedron Letters No. 26, pp 2331 - 2334, 1978. © Pergamon Press Ltd. Printed in Great Britain. 0040-4039/78/0622-2331\$02.00/0

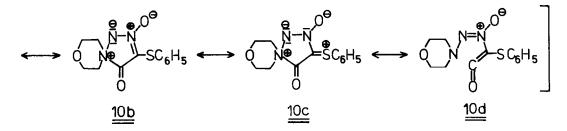
A NEW UNUSUAL PHOTOISOMERIZATION OF SYDNONES Hans Gotthardt^{*} and Friedemann Reiter FB 9 - Lehrstuhl für Organische Chemie, Gesamthochschule Wuppertal Gaußstr. 20, D-5600 Wuppertal 1, BRD

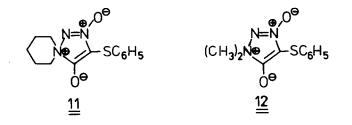

Alfred Gieren and Viktor Lamm

Max-Planck-Institut für Biochemie, Abteilung Strukturforschung I,

Am Klopferspitz, D-8033 Martinsried, BRD


(Received in UK 30 March 1978; accepted for publication 4 May 1978)


After a first report¹, the investigation of the photochemistry of sydnones $\underline{1}$ has been the subject of independent and almost simultaneous study by several groups²⁻⁵. For example, it has been established that the light-induced reaction of several substituted sydnones $\underline{1}$ proceed with formation of non-isolable nitrile imines $\underline{7}$ by way of the postulated intermediates $\underline{2}^{1-6}$, $\underline{6}^{1-5}$ or $\underline{3}^{6}$. In the presence of alkynes or alkenes, the photochemically generated $\underline{7}$ undergo [3+2] cycloaddition reactions leading to pyrazoles or pyrazolines, respectively²⁻⁵.


Now we have evidence for another photochemical process which probably involves the ketene derivatives $\frac{4}{2}$ or $\frac{5}{2}$ as intermediates. In this communication we wish to report on the synthesis, reaction pathway, and crystal structure analysis of new unusual photoisomers derived from sydnones.

When a benzene solution of 3-morpholino-4-phenylthio-sydnone $\underline{1}$ (R¹ = morpholino, R² = C₆H₅S)⁷ is irradiated ($\lambda \approx 300$ nm, or ≥ 400 nm) in a quartz tube, colorless crystals of a new sydnone photoisomer $\underline{10}$ (15% yield, mp 179-181°C dec, from ethyl acetate) and diphenyldisulfide (22% yield) as well as some unreacted sydnone are obtained after thin layer chromatography on silica gel. $\underline{10}$ shows the following spectroscopic data: ir (KBr), 1780, 1769 (C=0), 1327 cm⁻¹ (N-O); uv (CH₂Cl₂), λ_{max} (lg ϵ) = 235 (4.24), 329 nm (3.75); ¹H-NMR (60 MHz, [D₆]DMSO), τ = 6.10-6.68 (m, 2 NCH₂), 5.70-6.10 (m, 2 OCH₂), 2.78 (s, C₆H₅); ms (70 eV), m/e = 279 (93%, M⁺), 135 (46, C₆H₅SCN⁺), 128 (100, C₅H₈N₂O₂⁺).

The analogous photoreaction of $\underline{1}$ (R¹ = piperidino, R² = C₆H₅S)⁷ in benzene, acetone or methylene chloride afford the isomer $\underline{11}$ (mp 190-191.5°C dec) in 14-27% yield and 24% diphenyldisulfide ($\underline{11}$: ir, 1778, 1763 (C=O), 1332 cm⁻¹ (N-O); uv (CH₂Cl₂), λ_{max} (lge) = 236 (4.26), 328 nm (3.77); ¹H-NMR (CDCl₃), τ = 7.48-8.47 (m, 3 CH₂), 7.08-5.97 (m, 2 NCH₂), 2.78 (s, C₆H₅); ms, m/e = 277 (80%, M⁺)).

Similarly, the light-induced reaction of $\frac{1}{2}$ (R¹ = N(CH₃)₂, R² = C₆H₅S)⁷ in benzene produces $\frac{12}{2}$ (mp 154.5-155.5°C dec) in 18-22% yield and diphenyldisulfide (20%) ($\frac{12}{2}$: ir, 1776

(C=0), 1342 cm⁻¹ (N-0); ¹H-NMR (CDCl₃), $\tau = 6.75$ (s, N(CH₃)₂), 2.73 (s, C₆H₅); ms, m/e = 237 (100%, M^+), 135 (53, C₆H₅SCN⁺), 86 (89, C₃H₆N₂O⁺)).

Since several possible structures for the photoisomers did not give full agreement with the spectroscopic data, an X-ray structure analysis of $\underline{10}$ was performed which showed unexpectedly the spirane $\underline{10}$.

<u>10</u> crystallizes from a mixture of methanol/ethyl acetate (95:5) in the monoclinic space group P2₁/b with a=12.743, b=23.106, c=9.555 Å, γ =112.40° and eight molecules per unit cell. The crystal structure contains two independent molecules. On an automatic single crystal diffractometer, 4754 independent reflexions were measured with Cu K_a-radiation. The structure was solved by direct methods and refined by least-squares methods. All hydrogen atoms were found by difference Fourier syntheses and were included into the refinement. The R-value converged to 5.8% (3681 observed reflexions). Except for the twofold coordinated N atom, the classification (C or N) of the atoms in the heterocyclic five-membered ring was not straightforward. It was unambiguously performed and proved by temperature factor comparison, by parallel least-squares refinements, Fourier syntheses, and difference maps of the six alternative models⁸. <u>11</u> was also investigated by X-ray methods. It crystallizes from ethyl acetate isomorphously with <u>10</u>: a=13.12, b=23.10, c=9.56 Å, γ =112.40°. Therefore the conclusion can be drawn, that its molecular structure is the same as <u>10</u>, except of the change of the oxygen atom in the morpholine ring in <u>10</u> by a CH₂ group in the piperidine ring in <u>11</u>.

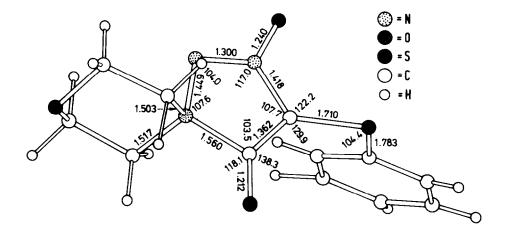


FIGURE 1. Molecular structure of $\underline{10}$. The distances and angles given are averaged values of the two molecules in the asymmetric unit.

The molecular structure of <u>10</u> is shown in the FIGURE 1. The five-membered heterocyclic ring and its oxygen and sulphur atom substituents are coplanar. The S-phenyl substituted Catom of this heterocyclic ring and the S-phenyl group are also almost coplanar. These planes are nearly perpendicular to each other. The bond distances and angles lead to a bonding discription via the resonance formulae $\underline{10a}$ - \underline{d} . Accordingly, the compound can be regarded as a *frozen transition state* of a nucleophilic addition of the amino nitrogen of the morpholine ring on the carbonyl-carbon of a ketene group. The significantly elongated single bond distance between these two atoms and the short C-O distance as well as the deformation of the angles at the C-O group show the participation of formula <u>10d</u>.

Since, this surprising formation of $\underline{10}$ was neither sensitized, using acetone as triplet sensitizer, nor quenched in the presence of 1.7 m piperylene, we assume that the first step of the isomerization of $\underline{1}$ to $\underline{10}$ proceeds via the (π,π^*) state of $\underline{1}$. Two possible alternative reaction pathways can be discussed. The first involves the formation of the valence tautomer $\underline{8}$ by way of an electrocyclic ring-opening of the sydnone $\underline{1}$. Intramolecular nucleophilic attack of the amino nitrogen on the carbonyl carbon of the ketene $\underline{8}$ converts $\underline{8}$ to the four-membered ring $\underline{9}$, which undergoes ring-expansion to the spiro compound $\underline{10}$. A second and more direct way includes the previously postulated bicyclic intermediate $\underline{2}$ followed by ringopening to the ketene derivative $\underline{5}$ which collapses to $\underline{10}$. The observed formation of diphenyldisulfide is a result of secondary photolysis of the C-S bond followed by recombination of the generated phenylthic radicals.

All new described compounds gave satisfactory analytical results.

Acknowledgement: This work was supported by the Fonds der Chemischen Industrie.

REFERENCES

- 1. C.H.Krauch, J.Kuhls, and H.-J.Piek, Tetrahedron Lett. 1966, 4043.
- 2. H.Gotthardt and F.Reiter, Tetrahedron Lett. 1971, 2749.
- 3. M.Märky, H.-J.Hansen, and H.Schmid, Helv. Chim. Acta 54, 1275 (1971).
- 4. C.S.Angadiyavar and M.V.George, J.Org. Chem. <u>36</u>, 1589 (1971).
- 5. Y.Husaya, A.Chinone, and M.Ohta, Bull. Chem. Soc. Jpn. 44, 1667 (1971); 45, 3202 (1972).
- H.Kato, T.Shiba, E.Kitajima, T.Kiyosawa, F.Yamada, and T.Nishiyama, J.Chem.Soc., Perkin Trans. 1, <u>1976</u>, 863.
- 7. The sydnones were prepared according to the procedure described by K.Masuda and T.Okutani, Jap.Pat. 7020902 (1970); Chem.Abstr. <u>73</u>, 87927m (1970); Tetrahedron <u>30</u>, 409 (1974).
- 8. A.Gieren and V.Lamm, Acta Crystallogr., manuscript in preparation.